Call for Abstract

25th International Conference and Exhibition on Pharmaceutics & Novel Drug Delivery Systems, will be organized around the theme “Unlocking the Future Medicine: Innovations and Breakthroughs at Pharma Industry”

PHARMACEUTICA 2024 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in PHARMACEUTICA 2024

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Bio Pharmaceutics conferences plays an important role in drug discovery like drug disposition, Innovations in clinical development, Pharmaceutical technology, Pharmaceutics and drug delivery, Drug design, Targeted drug, gene delivery,  Sustained drug delivery system, Routes of administration, Fundamental drug development. Uses for biopharmaceuticals include the manufacture of vaccines, blood and blood components, allergenics that treat allergies, body cells and tissues, living cells used in cell therapies, gene therapies, and recombinant therapeutic proteins. A biopharmaceutical (biological or biologic), which consists of sugars, proteins, nucleic acids, living cells, or tissues, is a medicinal product manufactured in extracted or semi-synthesized from biological sources like humans, animals, or microorganisms.

  • Track 1-1Biopharmaceutics and drug disposition
  • Track 1-2Pharmaceutical technology
  • Track 1-3Innovations in clinical development

Pharmaceutical Chemistry is the study of drug design to optimize pharmacokinetics and pharmacodynamics, and synthesis of new drug molecules. Pharmaceutical Chemistry is a branch of chemistry that deals with the chemical, biochemical and pharmacological aspects of drugs. It includes synthesis/isolation, identification, structural elucidation, structural modification, structural activity relationship (SAR) studies, and study of the chemical characteristics, biochemical changes after drug administration and their pharmacological effects as well as analysis of drugs. In more simple words it is more broader than medicinal chemistry in its application also in the fields of analysis, identification, as well as, structural elucidation of drugs.

  • Track 2-1Cheminformatics
  • Track 2-2Drug discovery and development

Drug design, often referred to as rational drug design or simply rational design, is the inventive process of finding new medications based on the knowledge of a biological target. The drug is most commonly an organic small molecule that activates or inhibits the function of a biomolecule such as a protein, which in turn results in a therapeutic benefit to the patient. In the most basic sense, drug design involves the design of molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Drug design frequently but not necessarily relies on computer modeling techniques. This type of modeling is sometimes referred to as computer-aided drug design. Finally, drug design that relies on the knowledge of the three-dimensional structure of the biomolecular target is known as structure-based drug design. In addition to small molecules, biopharmaceuticals and especially therapeutic antibodies are an increasingly important class of drugs and computational methods for improving the affinity, selectivity, and stability of this protein-based therapeutics have also been developed.

  • Track 3-1Drug targeting strategies

Pharmacokinetics is currently defined as the study of the time course of drug absorption, distribution, metabolism, and excretion. Clinical pharmacokinetics is the application of pharmacokinetic principles to the safe and effective therapeutic management of drugs in an individual patient. Primary goals of clinical pharmacokinetics include enhancing efficacy and decreasing toxicity of a patient’s drug therapy. The development of strong correlations between drug concentrations and their pharmacologic responses has enabled clinicians to apply pharmacokinetic principles to actual patient situations.

Pharmacodynamics refers to the relationship between drug concentration at the site of action and the resulting effect, including the time course and intensity of therapeutic and adverse effects. The effect of a drug present at the site of action is determined by that drug’s binding with a receptor.

  • Track 4-1Pharmacokinetic parameters
  • Track 4-2Absorption of drugs

Pharmaceutics is the study of relationships between preformulation, pharmaceutical formulation, delivery, disposition and clinical response. The inherent instability nature of a new drug will alter its desired form into undesired form when presented in a suitable dosage form with the excipient/s upon storage. NDDS conference will discuss on early approaches, present scenario and future prospects of preformulation events. There are more than 1400 sustained or controlled release drugs have been approved all over the world. Pharmaceutical conferences discuss the state-of-art technology being applied and involve advances in formulation studies.

  • Track 5-1Preformulation in drug discovery
  • Track 5-2Powder blending

Drug manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs by pharmaceutical companies. The process of drug manufacturing can be broken down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others.

  • Track 6-1Formulation and pre-formulation development
  • Track 6-2Powder blending

Size reduction is a fundamental unit operation having important applications in pharmacy. It helps in improving solubility and bioavailability, reducing toxicity, enhancing release and providing better formulation opportunities for drugs. In most of the cases, size reduction is limited to micron size range, for example, various pharmaceutical dosage forms like powder, emulsion, suspension etc. Drugs in the nanometer size range enhance performance in a variety of dosage forms. Major advantages of nano sizing include (i) increased surface area, (ii) enhanced solubility, (iii) increased rate of dissolution, (iv) increased oral bioavailability, (v) more rapid onset of therapeutic action, (vi) less amount of dose required, (vii) decreased fed/fasted variability, and (viii) decreased patient-to-patient variability.

Pharmaceutical nanotechnology has provided more fine-tuned diagnosis and focused treatment of disease at a molecular level. Pharmaceutical nanotechnology is most innovative and highly specialized field, which will revolutionize the pharmaceutical industry in near future. Pharmaceutical nanotechnology presents revolutionary opportunities to fight against many diseases. It helps in detecting the antigen associated with diseases such as cancer, diabetes mellitus, neurodegenerative diseases, as well as detecting the microorganisms and viruses associated with infections. It is expected that in next 10 years market will be flooded with nanotechnology devised medicine.

  • Track 7-1Nanobiomaterials and biopharmaceuticals
  • Track 7-2Nano-drugs

Nanoparticles (NPs) occur naturally and have been in existence for thousands of years as products of combustion and cooking of food. Nanomaterials differ significantly from other materials due to the following two major principal factors: the increased surface area and quantum effects. These factors can enhance properties such as reactivity, strength, electrical characteristics, and in vivo behavior. As the particle size decreases, a greater proportion of atoms are found at the surface compared to inside. An NP has a much greater surface area per unit mass compared with larger particles, leading to greater reactivity. In tandem with surface area effects, quantum effects can begin to dominate the properties of matter as size is reduced to the nanoscale. These can affect the optical, electrical, and magnetic behavior of materials. There in vivo behavior can be from increased absorption to high toxicity of nanomaterial’s. New drug carrier systems are one can name soluble polymers, micro particles made of insoluble (or) biodegradable natural and synthetic  polymers, microcapsules, cells, cell ghosts, lipoproteins, liposomes and micelles.

Key players in the market include Amgen, Inc., AstraZeneca plc, Eli Lilly & Co., Ipsen S.A., Merck & Co., Novartis AG, Novo Nordisk A/S, Roche Holdings AG, Sanofi, Takeda Pharmaceutical Company Limited, and Teva Pharmaceutical Industries Limited. Leading API manufacturers include Bachem Holding AG, PolyPeptide Group, and Peptisyntha Inc. at the pharmaceutical companies’ conference.

  • Track 8-1Nanomedicine in Drug Delivery
  • Track 8-2Routes of delivery

Smart drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of targeted drug delivery systems is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug side-effects, and reduced fluctuation in circulating drug levels. The disadvantage of the system is high cost, which makes productivity more difficult and the reduced ability to adjust the dosages.

  • Track 9-1Targeted drug delivery
  • Track 9-2Blood brain barrier delivery

Nanomedicine is simply the nanotechnology applications in a healthcare setting and the majority of benefits that have already been seen involve the use of nanoparticles to improve the behavior of drug substances and in drug delivery. Today, nanomedicine conferences are used globally to improve the treatments and lives of patients suffering from a range of disorders including ovarian and breast cancer, kidney disease, fungal infections, elevated cholesterol, menopausal symptoms, multiple sclerosis, chronic pain, asthma and emphysema. Nanomedicine has the potential to develop radical new therapies based on an unprecedented control over both intracellular processes and the extracellular environment at the nanometer scale. To create precise solutions for intricate medical challenges in the area of wound healing, tissue regeneration and mitochondrial disease physical scientists, medical doctors, and industrial partners, work closely in the Radboud Nanomedicine Alliance. The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced delivery systems, new therapies, and in vivo imaging.

  • Track 10-1Inorganic nanoparticles

A biomaterial is any substance that has been engineered to interact with biological systems for a medical purpose - either a therapeutic (treat, augment, repair or replace a tissue function of the body) or a diagnostic one. Biomaterials conferences can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application, and thus comprise whole or part of a living structure or biomedical device which performs, augments, or replaces a natural function. Such functions may be benign, like being used for a heart valve, or may be bioactive with a more interactive functionality such as hydroxy-apatite coated hip implants. Biomaterials 2024 are also used every day in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of a drug over an extended period of time. A biomaterial may also be an autograft, allograft or xenograft used as a transplant material.

  • Track 11-1Cells and proteins
  • Track 11-2Biomaterials & therapeutics

Vaccine is a material that induces an immunologically mediated resistance to a disease but not necessarily an infection. Vaccines are generally composed of killed or attenuated organisms or subunits of organisms or DNA encoding antigenic proteins of pathogens. Sub-unit vaccines though exceptionally selective and specific in reacting with antibodies often fail to show such reactions in circumstances such as shifts in epitopic identification center of antibody and are poorly immunogenic. Delivery of antigens from oil-based adjuvants such as Freunds adjuvant lead to a reduction in the number of doses of vaccine to be administered but due to toxicity concerns like inductions of granulomas at the injection site, such adjuvants are not widely used. FDA approved adjuvants for human uses are aluminium hydroxide and aluminium phosphate in the form of alum. Hence, search for safer and potent adjuvants resulted in the formulations of antigen into delivery systems that administer antigen in particulate form rather than solution form.

Other reasons driving the development of vaccines as controlled drug delivery systems are as follows:

  • Immunization failure with conventional immunization regimen involving prime doses and booster doses, as patients neglect the latter. Vaccines delivery systems on the other hand:
  • Allow for the incorporation of doses of antigens so that booster doses are no longer necessary as antigens are released slowly in a controlled manner.
  • Control the spatial and temporal presentation of antigens to the immune system there by promoting their targeting straight to the immune cells.
  • Track 12-1Cancer vaccines
  • Track 12-2Novel vaccines

In this session we will focus on medical devices designed for drug delivery conferences through the pulmonary and nasal routes. These routes are of interest for local delivery, as in asthma, but also for rapid delivery of drugs to the system circulation and direct delivery to the central nervous system. Devices that account for specific anatomical and physiological features of the intranasal and pulmonary routes will be featured. Drug delivery devices are specialized tools for the delivery of a drug or therapeutic agent via a specific route of administration. Such devices are used as part of one or more medical treatments. Many in the industry have long felt overly burdened by what they consider to be an unnecessarily complex approval process. Critics claim it impedes innovation and delays the availability of better health care. In order to help innovators bring health care to the public Pharmaceutica 2024 hosts drug delivery conferences throughout the year.

  • Track 13-1Magnetic resonance imaging(MRI)
  • Track 13-2Respiratory therapy equipment
  • Track 13-3Instrumentation for psychophysiological measurements

Biologics are medicines made from living cells through highly complex manufacturing processes and must be handled and administered under carefully monitored conditions. Biologics are used to prevent, treat, diagnose, or cure a variety of diseases including cancer, chronic kidney disease, autoimmune disorders, and infectious diseases. Euro Biosimilars is exactly what its name implies — it is a biologic that is “similar” to another biologic drug already approved by the FDA. Under U.S. law, a biosimilar is approved based on a showing that it is “highly similar” to an FDA-approved biological product, known as a reference product. It may not have any clinically meaningful differences in terms of safety and effectiveness from the reference product.

  • Track 14-1Bio-analytics for biosimilars
  • Track 14-2Extrapolation and interchangeability

Pharmaceutical analysis is a process or a sequence of processes to identify and/or quantify a substance or drug, the components of a pharmaceutical solution or mixture or the determination of the structures of chemical compounds used in the formulations of pharmaceutical product. Analytical techniques conferences mainly used for the separation of the components from the mixture and for the determination of the structure of the compounds.

  • Track 15-1Foliar Chemistry Linked to Infestation and Susceptibility to Hemlock Woolly Adelgid (Homoptera: Adelgidae)
  • Track 15-2Bioanalytical techniques

Quality is always an imperative prerequisite when we consider any product. Therefore, drugs must be manufactured to the highest quality levels. End-product testing by itself does not guarantee the quality of the product. Quality assurance techniques must be used to build the quality into the product at every step and not just tested for at the end. In pharmaceutical industry, Process Validation performs this task to build the quality into the product because according to ISO 9000:2000, it had proven to be an important tool for quality management of pharmaceuticals.

  • Track 16-1Process validation and drug quality
  • Track 16-2Approach to process validation

Packaging is one of the largest industry sectors in the world, worth several billions. Pharmaceutical packaging represents a meager percentage of this colossal market. The global healthcare industry has seen a shift in paradigm and is now skewed toward effective and meaningful packaging. Packaging was considered as an afterthought which was required merely in the final stages of manufacturing for many pharmaceutical companies about a decade ago.

  • Track 17-1Future of packaging materials
  • Track 17-2Packaging for patient compliance

Clinical research aims to advance medical knowledge by studying people, either through direct interaction or through the collection and analysis of blood, tissues, or other samples.

A clinical trial involves research participants. It follows a pre-defined plan or protocol to evaluate the effects of a medical or behavioral intervention on health outcomes. By taking part in clinical trials conferences, participants not only play a more active role in their own health care, but they also can access experimental treatments and help others by contributing to medical research.

  • Track 18-1Clinical research & clinical trials: Academic perspective
  • Track 18-2Clinical operations & project management

Pharmacogenetics is the science that supports understanding the part that a person's hereditary make-up plays in how well a prescription functions, and additionally what symptoms are probably going to happen, enhancing our capacity to distinguish the hereditary reasons for illnesses and look for new medication targets. Pharmacogenetics alludes to hereditary contrasts in metabolic pathways which can influence singular reactions to drugs, both as far as restorative impact and additionally antagonistic impacts.

Pharmacogenomics is a quickly creating field that has essential ramifications in individualized treatment for patients and its suggestion influence tranquilize advancement issues such as medication safety, efficiency, and customized health care. Pharmacogenomics consolidates customary pharmaceutical sciences, for example, natural chemistry with explained colleague of qualities, proteins, and single nucleotide polymorphisms.

  • Track 19-1Cancer pharmcogenetics
  • Track 19-2Recent advances in DNA repair

Regulatory Affairs conferences contribute essentially to the overall success of drug development, both at early pre-marketing stages and at all times post-marketing. The pharmaceutical industry deals with an increasing number of interesting drug candidates, all of which necessitate the involvement of the quality assurance in regulatory affairs department.  The importance of intellectual property law is well established at all levels-statutory, administrative and judicial. It lays down minimum standards for protection and enforcement in member countries which are required to promote effective and adequate protection of intellectual property rights with a view to reducing distortions and impediments to international trade. The Agreement provides norms and standards in respect of following areas of intellectual properties are Patents, Trademarks, copyrights, Geographical indications, Industrial designs.

  • Track 20-1Drug regulations and organizations
  • Track 20-2Global pharma products registration