Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Samer Fahmi Ismail Adwan

Samer Fahmi Ismail Adwan

Queen’s University Belfast, UK.

Title: Fabrication of Nanoparticles for Delivery Across Microneedle Microporated Ocular Tissues

Biography

Biography: Samer Fahmi Ismail Adwan

Abstract

Nanoparticles (NPs) have the advantages of targeted drug delivery for extended periods and being patient friendly. This is crucial in chronic ocular diseases where continuous treatment is required to maintain the therapeutic concentration for a prolonged time. Improved delivery of NPs by loading in microneedle (MN) arrays was demonstrated by many research groups. Conventional rhodamine B-loaded poly(lactic-co-glycolic acid) (PLGA) NPs were fabricated by the solvent displacement method. The delivery of the particles was investigated using confocal laser scanning microscopy after application of the MN-NP dual delivery system. The images showed deeper fluorescence in the scleral tissue and localisation around the pores formed in the cornea after the application of MNs. Polymer based MN arrays were investigated in this study for the intrascleral delivery of rhodamine B-loaded NPs. The MNs were rigid after the application of different mechanical forces (Figure 1). Franz cell diffusion model was utilised to study the distribution of rhodamine B in ocular tissue, after the delivery of the MN-NP dual delivery system. Confocal microscopy imaging showed a more intense and deeper distribution of the particles in the scleral tissue, and there was localisation around the micropores created on the surface of the scleral tissue. Microporation of the corneal tissue showed localisation of the fluorescence around the micropores. Clinically, this would be of considerable value to be able to deliver a depot of the drug by deposition of drug-loaded NPs in the micropores formed in the sclera.